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Abstract

In this paper, we propose a simple and efficient framework for sim-
ulating dispersed bubble flow. Instead of modeling the complex hy-
drodynamics of numerous small bubbles explicitly, our method ap-
proximates the average motion of these bubbles using a continuum
multiphase solver. Then, the subgrid interactions among bubbles
are computed using our new stochastic solver. Using the proposed
scheme, we can efficiently simulate complex scenes with millions
of bubbles.
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1 Introduction

Attractive underwater scenes always contain bubbles. Especially,
viewers are fascinated by the interesting movements of multitudes
of small bubbles rising through the water. At the macroscopic level,
the global tendency of bubble movements roughly corresponds to
our intuitions about fluid dynamics, such as buoyancy, swirl, and
diffusion. At the microscopic level, however, each bubble is dis-
persed in a chaotic and unpredictable manner. Such microscopic
flow patterns, in which numerous small bubbles are distributed in
the two-phase flow regime, is called dispersed bubble flow. The
chaotic motion and complexity of this bubble distribution makes
numerical simulation of dispersed bubble flow very challenging.

Small numbers of bubbles can be simulated by multiphase fluid
solvers combined with a Eulerian surface tracking framework, and
various such methods have been introduced to the computer graph-
ics community [Hong and Kim 2003; Hong and Kim 2005; Song
et al. 2005; Zheng et al. 2006; Kim et al. 2007]. However, the meth-
ods developed to date have focused on handling relatively large
bubbles due to the numerical limitations of grid-based solvers. Al-
ternatively, particle–particle interaction models for simulating thou-
sands of small bubbles have also been presented [Müller et al. 2005;
Cleary et al. 2007; Hong et al. 2008; Mihalef et al. 2009]. How-
ever, simulation of millions of dispersed bubbles using these mod-
els is impractical, as it requires the direct computation of the inter-
actions among vast collections of particles. The impracticality of
these models is not just a matter of computation time, but also of
system stability.

As a means of reducing the computational burden, a multi-layering

Figure 1: Simulation of rising bubbles generated around hot ob-
jects. The simulation was carried out using a 192×256×128 regu-
lar grid with a maximum of about 1,160,000 bubbles. The simula-
tion took about 15 seconds per animation frame.

framework has become prevalent in recent movies with special ef-
fects [Geiger et al. 2006]. In this framework, multiple particle lay-
ers are added for dispersed droplet effects such as spray, mist, and
white-foam. The movements of these droplets are so simple that
they can be controlled by artists in a manual (or pseudo-physical)
way. However, the movements of the dispersed bubbles are affected
by bubble–bubble and bubble–liquid interactions, making them too
complicated to be mimicked by artists.

In this paper, we present a new framework for realistically and effi-
ciently simulating dispersed bubble flow. As mentioned above, the
most challenging aspect of simulating such flows is the computation
of the individual interactions among large numbers of particles and
the integration of physical contributions from subgrid bubble struc-
tures into the fluid solver. Given that, at present, reproducing such a
situation using direct simulation of governing equations is not prac-
tically feasible, in this work we take a spatial averaging and stochas-
tic approach. Instead of computing the discrete boundary condition
of two different media explicitly, we model the average motion of
the dispersed region of bubble flow as a continuum. Based on a
grid-based solver, the overall bubble–bubble and bubble–liquid in-
teractions can be solved using this continuum model. Also, to sim-
ulate the complex interactions among bubbles, we introduce a new
stochastic approach for simulating the subgrid dynamics of bubbles.
By separating the computation into two stages, the global motion of
bubbles can be effectively solved using the continuum solver, while
still maintaining the visual complexity of dispersed bubble flow by
means of the stochastic solver.
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2 Previous Work

Hong and Kim [2003] introduced the volume-of-fluid method
(VOF) [Hirt and Nichols 1981] to simulate bubble dynamics.
Subsequently, Hong and Kim [2005] adopted the ghost fluid
method [Kang et al. 2000] to capture the discontinuity of physi-
cal properties across the bubble–liquid interface. Song et al. [2005]
presented a two-phase fluid solver for simulating systems contain-
ing both gas and liquid phases . Mihalef et al. [2006] simulated
boiling water by applying a two-phase version of the coupled level
set and volume-of-fluid (CLSVOF) method of [Sussman 2003], and
Kim and Carlson also proposed simple boiling framework [2007].
Zheng et al. [2006] developed a regional level set method to capture
the very thin interfaces of bubbles, and Kim et al. [2007] extended
this work by introducing a volume control method for bubbles and
foams. Alternatively, based on smoothed particle hydrodynamics
(SPH) [Monaghan 1992], Muller et al. [2005] developed a two-
phase fluid solver and Cleary et al. [2007] devised a simulation
method for bubbling and frothing liquids. These methods mainly
focus on the dynamics of large bubbles or gas–liquid interfaces.

To capture motion of bubbles whose diameters are much smaller
than the grid resolution, particle models have been applied to the
grid solver. Based on the particle level set method [Enright et al.
2002], Greenwood and House [2004] changed escaped particles
into small bubbles. Hong et al. [2008] extended this hybrid frame-
work by designing SPH-based dynamics for escaped bubble par-
ticles. Similarly, Thürey et al. [2007] coupled SPH bubbles to a
shallow water framework, and Mihalef et al. [2009] incorporated a
particle model into a grid-based simulator using the marker level
set. However, none of these methods was applied to dispersed bub-
ble flows including millions of small bubbles, such as that shown in
Figure 1.

3 Our Method

To couple dispersed bubbles with a conventional gas–liquid solver,
the gas and liquid volumes are represented by a level set surface,
and the dispersed bubbles are represented by spherical particles.
In this section, we first review the basic fluid solver, then describe
how to compute the average motion of a flow, and finally present
the subgrid bubble dynamics solver.

3.1 Basic Fluid Solver

In this paper, we assume viscous incompressible two-phase flow
when modeling the gas-liquid dynamics. The incompressible
Navier–Stokes equations are given by the momentum conservation
equation

ut + (u · ∇)u + ∇p/ρ = ∇ · (µ∇u)/ρ + f/ρ (1)

and the mass conservation equation

∇ · u = 0, (2)

where u, p, ρ, µ, and f represent the velocity, pressure, density, vis-
cosity, and external force, respectively. We solve the above equa-
tions using the stable fluids framework of Stam [1999]. In addition,
we used the level set method [Osher and Fedkiw 2002] to capture
and track the gas-liquid interface, which defines signed-distance
function ϕ such that |∇ϕ| = 1 for all domains and the interface
is defined at ϕ = 0. Also, we define the region of ϕ < 0 as a liquid,
and ϕ > 0 as a gas.

Figure 2: Overview of the dynamics of dispersed bubble flow. θ
indicates the altered direction (see equation 9).

3.2 Simulating Dispersed Flow as a Continuum

When a liquid and gas are in contact, they are separated by a
clear interface. This discontinuity generates complex hydrodynam-
ics [Hong and Kim 2005]. For a dispersed flow, however, the length
scale of the interface shape is much smaller than the grid size.
Therefore, instead of computing the discrete boundary condition
of two different media explicitly, we encode volume information of
the media into a fraction field, which is a spatial average of each
medium as a continuum. Here, information from both level set and
bubble particles is transferred to the fraction field, so that the global
dynamics of the liquid, large level set bubbles, and microscale bub-
bles can be computed in a single framework.

First, we show how to compute liquid fraction field f , and utilize
this information to couple small bubble particles with liquid or large
bubbles. To convert the level set field to a fraction field, we use
fϕ = H(ϕ), where H is a Heaviside (step) function. Here, we use
a smoothed Heaviside function, which can be written as,

H(ϕ) =

8

>

<

>

:
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+ 1
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(3)

We employed ϵ = 1.5h, where h is size of the grid cell. Using this
intermediate fraction field fϕ, the contribution of bubble particles
is added. We can write this in the following simple equation:

fcell = fϕ
cell −

X

i∈cell

4π

3
(ri/h)3, (4)

where ri is the radius of particle i in a grid cell.

After computation of fraction field f , a pressure Poisson equation

∇ · (∇p∗/ρ) = ∇ · u, (5)

which results from equations 1 and 2, can be discretized as follows
X

faces

(p∗
a − p∗

b)/ρface =
X

faces

uface · nface (6)

where p∗ = ∆t p,
P

face is the summation for the surrounding
faces between cell a and its neighboring cells b, and nface is the
cell-face normal. Here, the density at the face, ρface, can be com-
puted as follows using the fraction field,

ρface = ρgas + (ρliquid − ρgas)fface. (7)

The same approach can be easily applied to compute µface in a
Poisson equation from implicit integration of the diffusion equa-
tion. After computing the pressure and viscosity, the bubble parti-
cles are advected according to the velocity field.
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Figure 3: Simulation of rising bubbles. (a), (b), (c), and (d) show
the results obtained using different ν and k values. The right-most
plot shows the unstable path of the 13,000th bubble particle of (b).

This fractional density/viscosity formulation naturally generates
buoyancy and swirl fields in the cells of dispersed bubbles. Instead
of our formulation, a sophisticated approach such as the two-fluid
model [Ishii 1975], which analyzes two-phase flow as two separated
fluid layers, may be applied. However, such models incur a greater
computational cost because most of the governing equations must
be computed twice, and require twice as much memory to store two
fluid layers. Also, the relative motion between bubbles and liquid
in a dispersed flow is much smaller than in bubbly flows with fewer
and larger bubbles [Trafalis et al. 2005]. Thus, it is more efficient
to model dispersed flows as a single averaged velocity field.

3.3 Stochastic Solver for Subgrid Bubble Dynamics

Each rising bubble creates a wake that affects other bubbles (includ-
ing itself), giving rise to complicated hydrodynamics. Although it
is theoretically possible to accurately capture the vortices gener-
ated by each bubble, this approach is impractical when attempting
to simulate huge numbers of microscale bubbles.

Instead, we model this phenomenon as a discrete random walk. As
shown in Figure 2, a bubble particle is scattered due to the turbulent
flow generated by other bubbles. Thus, when a bubble particle ap-
proaches other, sparsely distributed bubbles, it may be scattered by
those bubbles, or it may be unaffected and move freely to another
position. To model this process, let s(x) be the probability function
over space where the scattering of a bubble might occur. Here, we
define this function as

s(x) = νρgas[1 − f(x)]|u(x)|2, (8)

where ν is the user-specified scattering frequency and 1 − f is the
fraction of gas. Similarly to Brownian motion, which results from
the combined effects of intra- and intermolecular interactions, the
velocity u is squared to reflect the kinetic energy density of bubbles
(ρgas[1− f(x)]|u(x)|2). By this definition, more scattering events
will occur when the concentration of bubbles and the magnitudes
of their velocities are high. For each particle, we measure s(x) af-
ter updating the average particle velocity (described in the previous
section). If a certain particle is determined to be scattered, the di-
rection of that particle’s velocity is altered. Since the volume of the
individual particle is relatively smaller than the volume of a grid
cell, the particle’s new direction can be calculated using Schlick’s
phase function [Blasi et al. 1993] for tracing massless particles in
participating media, which can be expressed as,

cos θ = (2ξ + k − 1)/(2kξ − k + 1) (9)

where θ, ξ ∈ [0, 1], and k ∈ [−1, 1] represent the altered direction
(in radian), a uniform random number, and the scattering coeffi-

cient, respectively. Here, k = 0 gives isotropic scattering, k > 0 is
forward scattering, and k < 0 is backward scattering. The Schlick
phase function, which is an approximation of the empirical Henyey-
Greenstein phase function, determines the direction of particle after
particle-dust collision event based on the distribution of dust. We
adopted this function and reinterpreted it to determine the direction
of bubble after bubble-turbulent vorticities collision event based on
the distribution of bubbles (sources of the turbulent vorticities).

Of course, the Schlick function (equation 9) was not originally in-
vented for computing diffusion process of suspended particles un-
der turbulence flow. In the aspect of computational fluid dynamics
(CFD), it could be right to introduce stochastic differential equa-
tions (SDE) [Kloeden and Platen 1992; Yuu et al. 1978], such as
Langevin equation or Fokker-Plank equation to solve accurate dis-
tribution of particles. In our simulation, however, each bubble is
very light compared to the surrounding liquid, and is reasonable to
compute its path with mass-less particle tracer - the Schlick func-
tion. Most of all, the Schlick phase function can be easily controlled
by artists with intuitive parameters, and it is also very simple to be
implemented. Thus, as shown in Figure 3, it can produce various
kinds of visual effects without struggling with complex physical
parameters.

After solving equation 9, momentum of each bubble should be
transferred to grids. This process is computed be defining scat-
tering force mi(u

altered
i − ui)/∆t, which can be applied to the

cell containing particle i, as an external force f of equation 1. Here,
mi = ρgas(4π/3)r3

i is the mass of particle i. Figure 3 shows the
results obtained using various values of ν and k. Note that sim-
ulations with large ν or small k exhibit diffusive characteristics.
Solving equation 8 and 9 is similar to simulating Brownian mo-
tion, which describes the molecular motion of diffusion processes.
Thus, it is natural that ν and k control the diffusiveness of the par-
ticle distribution. In addition, examination of the trajectory of a
single bubble (Figure 3) reveals zig-zag and spiral oscillatory mo-
tions, thus demonstrating that our method can reproduce a bubble
path instability [Shew and Pinton 2006; Hassan et al. 2008].

3.4 Break-up of Bubbles

To simulate break-up events of microscale bubbles, we adopt Kol-
mogorov’s concept of viewing solid particle breakup as a discrete
random process [Kolmogorov 1949]. For each particle, a random
number ξ ∈ [0, 1] is compared to a user-specified break-up fre-
quency γ. If ξ is smaller than γ, the bubble particle is broken into
two particles, each half the volume of the initial particle (radius of
1/ 3

√
2), and the resulting particles are scattered using equation 9.

4 Results

All experiments reported here were performed on an Intel Core i7
920 2.66 GHz processor with 6 GB of memory. We used a uniform
regular staggered grid for discretization. For computing the advec-
tion term in equation 1, we used the unsplit semi-Lagrangian CIP
method [Kim et al. 2008]. Also, our solver is parallelized using
OpenMP library. We used 8 threads with full 4 cores with hyper-
threading enabled (×2 threads) for the computation, which is the
default setting using OpenMP in Intel Core i7 920. Each part of
the simulator shows different scale-up factor: our multigrid solver
did not show good scalability performance, while the advection and
level set solver have shown relatively good performance. It depends
on the scene complexity, but multigrid solver took more than 60%
of the total computation time for most of the experiments. Updating
bubbles step was easily parallelized, except for the accumulation
step, which converts bubbles to the fraction field (since it requires
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Figure 4: Simulation of bubbles generated around a melting bunny
object.

critical section to protect from race conditions). For all of our ex-
periments, we used 1.25kg/m3 for ρgas, 1000kg/m3 for ρliquid,
2.0 × 10−5kg/ms for µgas, 1.0 × 10−3kg/ms for µliquid, 0.25
for ν, 0.9 for k, and 10−4 for γ.

Figure 1 shows the result of a simulation of bubbles generated
around hot objects. In this experiment, we did not simulated boiling
as shown in [Mihalef et al. 2006], but just simply emitted bubbles
from randomly sampled points on the object’s surface. The simula-
tion was carried out using a 192×256×128 grid with a maximum of
approximately 1,160,00 particles. Approximately 15 seconds were
required to advance a single animation frame (1/30 seconds).

Figure 4 shows the result of a simulation of bubbles generated
around a melting bunny-shaped object. This animation of melt-
ing was created heuristically by subtracting a constant value from
the level set field of the bunny model. The simulation was carried
out using a 160×192×96 grid with a maximum of approximately
1,570,000 particles. The simulation took only about 7 seconds to
advance a single animation frame.

In Figure 5, we assess the quality of our simulation (Figure 5 (a))
by comparing the results with video taken from a real-world exper-
iment (Figure 5 (b)). When a bubble agent is placed at the bottom
of a water tank, a massive number of microscale bubbles are gen-
erated from the agent’s surface. Although the individual path of
each bubble is clearly different, the overall motion of the simulated
bubbles qualitatively resembles the real bubble motions. Both the
simulated and real systems show an unstable rising pattern of bub-
bles and smoke-like diffusion after reaching the water surface. The
simulation was carried out using a 803 grid with a maximum of
approximately 2,600,000 particles. The simulation took about 16
seconds per single animation frame.

5 Conclusion

In this paper, we have presented a simple and fast method for sim-
ulating dispersed bubble flow. To simulate a large set of bubbles,
we separated the direct numerical solver into two stages. First, in-
stead of computing the discrete boundary condition between gas
and liquid, we took a spatial averaging approach to interpret dis-
persed bubble flow as a continuum. Then, the subgrid interactions
among bubbles were calculated using our new stochastic solver. As
a result, we could simulate complex scenes with millions of mi-
croscale bubbles in less than 16 seconds per frame on a single PC.

Our limitation mainly comes from the approximation of bubble dy-
namics, which does not correctly handle per-bubble collision, merg-

Figure 5: Comparison of simulated and real systems in which a
bubble agent is placed at the bottom of a water tank. The top image
row shows the simulator output, and the bottom image row shows
the video images.

ing, shape variation, and overlapping problem. In order to avoid
this kind of problems, one should perform proximity test or colli-
sion detection between large set of bubbles. Without the considera-
tion of direct interaction between bubbles, sometimes they will get
overlapped, or introduce such kind of artifacts. However, perform-
ing per-bubble interaction will eventually reduce the performance
of the solver. Thus, we approximated bubble interaction by accu-
mulating them into the fraction field.

Future extensions of our method include simulation of other kinds
of particulate flow, which involves dust or sand, and simulation of
mixed water sprays and bubbles, which can be observed from wa-
terfalls or breaking waves.
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